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Abstract: The Bishop’s theorem states that a Riemannian manifold nM  with Ricci curvature larger 
than the standard n-sphere has less volume. This paper mainly reviews the Hubert Bray’s proof of 
Bishop’s volume comparison theorem with isoperimetric technique. Some details in the proof are 
optimized to address this issue more clearly. 

1. Introduction 
It is well known that curvature conditions have a significant impact on manifold’s geometry. A 

classic volume comparison theorem in Riemannian geometry is the following Bishop’s theorem. 
Theorem1.1(Bishop-Gromov) If ( ),nM g  is complete Riemannian manifold with ( )1Ric m k≥ − , 

and p M∈  is an arbitrary point, then the function 
( )( )

( )
Vol

Vol
r

k
r

B p
r

B
  is a non-increasing function 

which tends to 1 as r  goes to 0, where ( )rB p  is the geodesic ball in nM  centered at p , k
rB  is a 

geodesic ball of radius r in the space form n
kM . In particular, ( )( ) ( )Vol Vol .k

r rB p B≤  
The Bishop’s volume comparison theorem has been studied since it was first demonstrated by 

Bishop in 1963 [1]. Literature[8] provides a proof utilizing the geodesic ball and index form. In the 
area of differential geometry, this theorem is widely used. It can be used, for instance, to provide an 
elementary proof of the maximal diameter theorem [2], namely for a complete Riemannian n-
manifold nM  whose Ricci curvature is bounded below by 1, if the diameter of M  is equal to π , 
then M  is isometric to ( )1nS . A detailed proof of this theorem using Bishop’s theorem can be 
found in [3]. 

In this paper, we mainly review Bray’s proof of a special case of Bishop’s theorem[4]. 
Theorem1.2(Bishop) Let ( 0,nS g ) be the standard metric (with any scaling) on nS  with constant 

Ricci curvature 0 0Ric g⋅ . If ( ),nM g  is a complete Riemannian manifold ( )2n ≥  with 

( ) 0Ric g Ric g≥ ⋅ , then Vol( nM ) ≤  Vol( nS ). 

2. Preparations 
In this section, We discuss the definition of volume and derive the inequalities needed to prove 

the Bishop’s theorem. 
The definition of the volume of M  in Theorem 1.2 is ambiguous. For simplicity, in the 

following discussion we may just consider the orientable case. There are two ways to define the 
volume in the non-orientable case. One way is to use the following definition, and the other is to 
define the non-orientable volume of the manifold as half of the volume of its orientable double 
cover. While in geometric measure theory, the volume of the manifold is defined as its Hausdorff 
measure. 

Since the manifolds we are discussing about are complete, the exponential map plays an 
important role in the definition of volume. Recall that on an open chart, the volume form of a 
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Riemannian manifold ( ),nM g  is 
1

1 2Vol .nd G x dx dx dx−= …  
where ( )det ijG g=  and 1 ndx dx…  is the Lebesgue measure on n . 

It is known that for a connected complete Riemannian manifold ( ),nM g , exp p  is a 

diffeomorphism onto the dense open set ( )\M Cut p . If we denote ( ) ( )( )1exp \pp M Cut p−Σ = , 

( ) ( )1{ , \ , }pexp M Cut p p− Σ  is an open coordinate chart on M ( we identify the pT M  with n ). Here 
we define the function 

( ) ( ) ( )1  , , if n
pr G exp r r r pµ −Θ = Θ Θ∈Σ  

and if we suppose dΘ  is is the usual surface measure on 1nS − , then on ( )pΣ  we have 

( )Vol , .d r drdµ= Θ Θ  
And we define ( ), 0rµ Θ =  if ( )\pr T M pΘ∈ Σ .This is because firstly ( )Cut p  is a set of zero 

measure, which has no affect on the result of the integration. Secondly the images of points outside 
( )pΣ  under the exponential map are in ( )Cut p , or have been mapped by some points in ( )pΣ . 

Note that by definition, the geodesic ball 
( ) ( )( ) ( ) ( )( )exp 0 exp 0r p r p rB p B B p= = Σ∩ Where ( )0rB is the ball in .pT M  

Since ( )Cut p  is of measure zero in M , the volume of the geodesic ball is 

( )( )
( ) ( )

( )
( )

( )
00

Vol , , .
rr

r
BB p

B p r drd r drdµ µ
Σ

= Θ Θ = Θ Θ
∩
∫ ∫  

And we define 
( ) ( )( )Vol Vol dM B p= , where d is the diameter of  M. 

Using the definition above, we can directly prove the above theorem 1.2 with theorem 1.1. 
According to the Bonnet-Myers theorem, M ’s diameter is less than π . To arrive at the conclusion 
of Theorem 1.2, we simply consider r  equal to π  in Theorem 1.1. 

Since we are dealing with compact complete manifolds, the above definition using exponential 
map is a natural choice. The concept of volume given above corresponds to the definition of volume 
in Geometric Measure Theory on a Riemannian manifold, since at this time Riemannian measure 
matches Hausdorff measure. 

The following information about isoperimetric hypersurface is required before we move on to 
the proof of this special case of Bishop’s theorem. 

Let 1n−Σ .  be an orientable smooth compact surface without boundary in ( ,nM g ). We define a 
variation of 1n−Σ  as follows. For tδ δ− < <  and 1nx −∈Σ , suppose ( )1 ,n x t−Σ  which takes values in 

nM , is smooth, ( ) ( )1 1 1{ , | }n n nt x t x− − −Σ = Σ ∈Σ  is a smooth family of surfaces around 1n−Σ , and the 

vector ( )1 ,n x t
t

−∂Σ
∂

 is perpendicular to ( )1n t−Σ  at ( )1 ,n x t−Σ . Let ( ),x tµ  be the outward-pointing 

unit normal to ( )1n t−Σ  at ( )1 ,n x t−Σ , so that we must have 

( ) ( ) ( )
1 ,

, ,
n x t

x t x t
t

η µ
−∂Σ

=
∂

               (1) 

for some real-valued function ( ) ( )( )( )1, ,nx t x tη η −Σ . Let ( )d xµ  be the volume form on 1n−Σ , 

( )II x  be the second fundamental form of 1n−Σ  in nM  at x  with respect to ( )xµ , and 
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( ) ( )( )IIH x trace x=  be the mean curvature of 1n−Σ  at x . Let ( ),d x tµ  be the volume form on 

( )1 ,n x t−Σ , ( )II ,x t  be the second fundamental form of ( )1 ,n x t−Σ  in nM  at ( )1 ,n x t−Σ  with respect 

to ( ),x tµ , and ( ) ( )( ), II ,H x t trace x t=  be the mean curvature of ( )1n t−Σ  at ( )1 ,n x t−Σ . Then we 
have 

( ) ( ) ( ) ( ), , , , .d x t H x t x t d x t
t

µ η µ∂
=

∂
            (2) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )2
, , , II , , , , , .nt M

H x t x t x t x t x t Ric x t x t
t

η η η µ µΣ

∂
= −∆ − −

∂
 

     (3) 

The proof of the above euqations can be found in the appendix of [2]. From equation(3), we can 
get a useful fact. 

Definition2.1 Let ( ,nM g ) be a complete Riemannian n-manifold. Define the function 
( ) ( ) ( )inf{ | Vol },

R
A V Area R R V= ∂ =  where R  is any rectifiable current in nM , Vol( R ) is the n 

dimensional volume(the Hausdorff measure) of R , and Area( R∂ ) is the 1n −  dimensional volume 
of R∂ . If there exists a rectifiable currents R with Vol(R) = V such that Area( ( ))R A V∂ = , then we 
say that RΣ = ∂  minimizes area with the given volume constraint. 

Lemma2.2 If Σ  minimizes area with the given volume constraint, Σ  is smooth, then Σ  has 
constant mean curvature. 

Remark: This property can be seen as a generalization of the minimum surface’s zero mean 
curvature property. 

Proof: We prove it by contradiction. Suppose that Σ  does not have constant mean curvature. 
Then consider a smooth variation ( )tΣ  of Σ . Because, ( )

( )
( ), ,

t

A t d x tµ
Σ

= ∫  

so, by (2), we get ( )
( )

( ) ( ) ( ) ( )0' 0 , | ,0 ,0 ,0 .t
t

A d x t H x x d x
t

µ η µ=
Σ Σ

∂
= =

∂∫ ∫  

On the other hand, we have ( ) ( ) ( )' 0 ,0 ,0 .V x d xη µ
Σ

= ∫  

We can always find an ( ),0xη  such that ( )' 0 0A <  and ( )' 0 0V =  unless ( ),0H x  equals a 
constant, this leads to a contradition. 

Bray’s proof depends on the observation that the function ( )A V  we defined above has exactly 
two zero points, namely 0  and the Vol( M ). As a result, from this perspective, the Bishop’s 
theorem is equivalent to comparing the zero points of the function ( )A V , which transforms the 
original geometric question into an analytical one. So the next thing to do is to investigate the 
analytical properties of ( )A V  under given curvature condition. 

Since the manifolds we are dealing with have ( ) 0Ric g δ≥ > , according to Bonnet-Myers 
theorem, these manifolds are compact, so there will always exist a minimizer ( )VΣ  (not necessarily 
unique) for all V [5][6]. For simplicity, we only take into account the smooth case here because 
isoperimetric hypersurfaces may have singularities in dimensions greater than seven. Readers 
interested in the singular case can refer to [7], which demonstrates that in singular case the 
following equation (6) and the aforementioned lemma 2.2 in the sense of almost everywhere still 
hold true. 

And now we do a unit normal variation on ( )0VΣ , that is, let ( )
0V tΣ  be the surface created by 

flowing ( )0VΣ  out at every point in the normal direction at unit speed for time t. Since ( )0VΣ  is 
smooth, we can do this variation for ( ),t δ δ∈ −  for some 0δ > . Abusing the notation slightly, we 
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can also parameterize these surfaces by their volumes as ( )
0V VΣ  so that 0V V=  will correspond to 

0t = . Let ( ) ( )( )0 0V VA V Area V= Σ . Then ( ) ( )
00 0VA V A V=  and ( ) ( )

0VA V A V≤  since ( )
0V VΣ  is not 

necessarily minimizing for its volume. Hence, if ( )A V  has second derivative at 0V , we have 

( ) ( )
00 0 .VA V A V″ ≤ ″  

Now under the assumption that ( ) 0Ric g Ric g≥ ⋅ , we compute ( )
0 0VA V″ . We follow the 

notation discussed above, ( )
( )

0

0V

V
t

A t dµ
Σ

= ∫ , then by (2) ( )
( )

0

0

' .
V

V
t

A t Hdµ
Σ

= ∫  

And since ( )
( )0

'
V t

V t dµ
Σ

= ∫ , by chain rule, we get 

( ) ( )
( )

0

0 0

' 0
'

' 0
V

V

A
A V H

V
= =    H  is constant on ( )

0
0VΣ  

Since 
2 2 2 2

2 2 2 2 2

2 22 ,

dA d A dt dV dA d V d A dA d V
d A d dA d dt dt dV dt dV dt dt dV dt

dVdV dV dV dV dV dV
dt dt dt

  − −  = = = =  
      

        

 

so we get 

( ) ( ) ( ) ( )
( )

0 0

0

0
0 2

0 ' 0
.

' 0
V V

V

A A V V
A V

V

″ − ″
″ =                                      (4) 

Using (2) and (3), we get 

𝑑𝑑2𝐴𝐴
𝑑𝑑𝑉𝑉2

=
𝑑𝑑
𝑑𝑑𝑉𝑉 �

𝑑𝑑𝐴𝐴
𝑑𝑑𝑉𝑉�

=
𝑑𝑑
𝑑𝑑𝑉𝑉 �

𝑑𝑑𝐴𝐴
𝑑𝑑𝑑𝑑
𝑑𝑑𝑉𝑉
𝑑𝑑𝑑𝑑

� =
𝑑𝑑2𝐴𝐴
𝑑𝑑𝑑𝑑2

𝑑𝑑𝑑𝑑
𝑑𝑑𝑉𝑉

𝑑𝑑𝑉𝑉
𝑑𝑑𝑑𝑑 −

𝑑𝑑𝐴𝐴
𝑑𝑑𝑉𝑉

𝑑𝑑2𝑉𝑉
𝑑𝑑𝑑𝑑2

�𝑑𝑑𝑉𝑉𝑑𝑑𝑑𝑑�
2 =

𝑑𝑑2𝐴𝐴
𝑑𝑑𝑑𝑑2 −

𝑑𝑑𝐴𝐴
𝑑𝑑𝑉𝑉

𝑑𝑑2𝑉𝑉
𝑑𝑑𝑑𝑑2

�𝑑𝑑𝑉𝑉𝑑𝑑𝑑𝑑�
2 , 

where ( )xν  is unit normal pointed out at ( )0x V∈Σ . Finally, by Cauchy inequality 
2 21II

1
H

n
≥

−
, and ( ) 0,Ric Ricν ν ≥ ⋅ , we get 

𝐴𝐴𝑉𝑉0″(𝑉𝑉0)𝐴𝐴𝑉𝑉0(𝑉𝑉0)2 = 𝐴𝐴𝑉𝑉0″(0) − 𝐴𝐴𝑉𝑉0′(𝑉𝑉0)𝑉𝑉″(0)

=
𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝐻𝐻
𝛴𝛴(𝑉𝑉0)

𝑑𝑑𝑑𝑑 − 𝐻𝐻� 𝐻𝐻
𝛴𝛴(𝑉𝑉0)

𝑑𝑑𝑑𝑑

= � �̇�𝐻
𝛴𝛴(𝑉𝑉0)

𝑑𝑑𝑑𝑑

= � −
𝛴𝛴(𝑉𝑉0)

|II|2 − 𝑅𝑅𝑅𝑅𝑅𝑅(𝜈𝜈, 𝜈𝜈)𝑑𝑑𝑑𝑑.

 

Hence, we get 

( ) ( ) ( )
0 0

0

2
0 0 0

0

1 1 ' .
1V V

V

A V A V Ric
A V n

 ″ ≤ − + ⋅ − 
                             (5) 

We say that 
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( ) ( ) ( )2
0

1 1 ' .
1

A V A V Ric
A V n

 ″ ≤ − + ⋅ − 
                                   (6) 

in the sense of comparison functions, which means that for all 0 0V ≥  there exists a smooth 
function ( ) ( )

0VA V A V≥  with ( ) ( )
0 0 0VA V A V=  satisfying 

 ( ) ( ) ( )
0 0

0

2
0 0 0

0

1 1 ' .
1V V

V

A V A V Ric
A V n

 ″ ≤ − + ⋅ − 
  

Remark2.3: If ( )A V  has second derivative at 0V , then we define ( ) ( ) ( )
0Vf V A V A V= − . For 

( )f V , we have ( ) ( )0 0, 0f V f V= ≥ . So, ( ) ( )0 0' 0, 0f V f V= ″ ≥ , namely 

( ) ( ) ( ) ( )
0 00 0 0 0' ' ,V VA V A V A V A V= ″ ≤ ″ . Then we have 

 ( ) ( ) ( ) ( ) ( ) ( )
0 0

0

2 2
0 0 0 0 0 0

0 0

1 1 1 1' ' .
1 1V V

V

A V A V A V Ric A V Ric
A V n A V n

   ″ ≤ ″ ≤ − + ⋅ = − + ⋅   − −   
   

So, actually at this time the inequality also holds for ( )A V . 
The discussions above can lead to an interesting fact that the minimizing surface Σ  has exactly 

one component. 
Proposition2.4 Suppose RΣ = ∂  minimizes area for its volume, ( ),nR M g⊆ , and 

( ) 0Ric g δ≥ > . Then Σ  has exactly one component. 
Proof: Assume Σ  consists of multiple components. Then we just consider two of them, denoted 

by 1Σ  and 2Σ . We do a variation on Σ  which is flowing out on 1Σ , while is flowing in on 2Σ , such 
that ( ) ( ) ( ) ( )1 2 1 20 0V t V t V V+ = + , where the ( )iV t  denotes the volume contained in the ( )i tΣ (we 
can achieve this variation by controlling the ratio of the flowing rate). Now let’s consider variations 
on 1Σ  and 2Σ  respectively. We denote ( ) ( )

1 0VA V  for 1Σ , ( ) ( )
2 0VA V  for 2Σ . It is obviously that 1Σ  

and 2Σ  must be surfaces which minimize area. So we get 

 ( ) ( )( )
( ) ( )( ) ( ) ( )( )

1 1

1

2
1 1 00 0

10

1 10 ' 0 0.
10V V

V

A V A V Ric
nA V

 ″ ≤ − + ⋅ < − 
  

Here we take 0Ric δ⋅ = . 
Despite the fact that flow direction on 2Σ  is inward, since both inward and outward flow have 

the same second derivative. So, 

 ( ) ( )( )
( ) ( )( ) ( ) ( )( )

2 2

2

2
2 2 00 0

20

1 10 ' 0 0.
10V V

V

A V A V Ric
nA V

 ″ ≤ − + ⋅ < − 
  

Since all ( )tΣ  contain the same volume, and ( )0Σ  is the minimizer, so we must have 

( ) ( ) ( )1 2' 0 ' 0 ' 0 0A A A= + = , and ( )0 0A″ ≥ , where ( )iA t  is the area of ( )i tΣ , and ( )A t  is the area 
of ( )tΣ . What’s more, since the volume is constant, we have ( ) ( ) ( ) ( )1 2 1 2' 0 ' 0 0, 0 0 0V V V V+ = ″ + ″ = . 
Then, by (4) we have 
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𝐴𝐴″(0) = 𝐴𝐴1″(0) + 𝐴𝐴2″(0)

= 𝐴𝐴𝑉𝑉1(0)″�𝑉𝑉1(0)�𝐴𝐴𝑉𝑉1(0)�𝑉𝑉1(0)�2 + 𝐴𝐴𝑉𝑉1(0)′�𝑉𝑉1(0)�𝑉𝑉1″(0)

+ 𝐴𝐴𝑉𝑉2(0)″�𝑉𝑉2(0)�𝐴𝐴𝑉𝑉2(0)�𝑉𝑉2(0)�2 + 𝐴𝐴𝑉𝑉2(0)′�𝑉𝑉2(0)�𝑉𝑉2″(0)
< 𝐴𝐴𝑉𝑉1(0)′�𝑉𝑉1(0)�𝑉𝑉1″(0) + 𝐴𝐴𝑉𝑉2(0)′�𝑉𝑉2(0)�𝑉𝑉2″(0)

= 𝐴𝐴1′(0)�𝑉𝑉1′(0)�−1𝑉𝑉1″(0) + 𝐴𝐴2′(0)�𝑉𝑉2′(0)�−1𝑉𝑉2″(0)
= 0.

 

Contradiction. 
Remark: Even though in this case the flow rate of the variation is not constant, we are still 

permitted to apply (5) since it only deals with a derivative with respect to volume. 

4. Bray’s Proof of Bishop’s Theorem 
We can start proving the special case of Bishop’s theorem with the help of the above 

preparations. First, we establish a lemma that is in line with common sense. 
Lemma3.1 Suppose ( ),nM g  satisfies ( ) 0Ric g δ≥ > . Then ( )A V  is strictly increasing on the 

interval ( )10, Vol
2

nM 
  

. 

Proof: The boundaries of a region and its complement are identical, so the statement 
( ) ( )( )Vol nA V A M V= −  is true in all cases. According to remark 2.3, if ( )A V  has second 

derivative everywhere, then the inequality (6) holds for ( )A V (where we take 0Ric δ⋅ = ),which 
means that ( )A V″  is strictly negative. The lemma then follows. If ( )A V  doesn’t have second 
derivative, inequality (6) still applies because the existence of such comparison functions will force 
( )A V  to be strictly concave, which means that ( )A V  is strictly increasing. 
We define 

( ) ( ) 1
n

nF V A V −=  
and opt to deal with ( )F V  rather than ( )A V . The inequality for ( )F V  ends up being simpler 

than the inequality for ( )A V  because ( )F V  and V  have the same units and ( )F V  is roughly a 
linear function of V  for small V . 

By considering ( )F V , (6) becomes 

( ) ( )
2

01

n
n

nF V F V Ric
n

−
−″ ≤ − ⋅

−
                                      (7) 

in the sense of comparison functions. 

Since ( )F V  is monotone increasing on [0, 1
2

Vol( nM )] and monotone decreasing on [ 1
2

Vol( nM ),Vol( nM )], ( )'F V  exists almost everywhere but ( )'F V  does not necessarily exist for all 
V , although it is not required to exist for all V . However, the left and right hand derivatives, 

( )'F V−  and ( )'F V+ , always exist. 
Remark: There are two main reasons for this. First, when V  is small, we have 

( ) ( )
1

1
1

n
nF V n Vω −
−≈ , where 1nω −  is the volume of the sphere 1nS − . This results from the fact that 

the surface ( )VΣ  that minimizes area would fall in one normal coordinate ( )exp p U  and be 
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relatively close to the point p  when V is small. Since exp p  is almost an isometry near 0 pT M∈ , 
the surface ( )VΣ  that minimizes area is almost a sphere, just like in the case of Euclidean space. 
Direct calculation has given us 

( )

( )

( )

2 12

1 2 1 1 2

2 , 2,  2 1 !!
2 2, 2 1 , 2 12 1 !! 2 1 !!

mm
mm

n nm m m m
m m

RR n mn m mm
V S

R Rn m n mm m

ππ

π π

−

+ + +

 ==  − = = 
 = + = + + − 

 

where nV  is the volume of n  dimentional ball with radius R , and nS  the volume of 1n −  
dimentional sphere with radius R . Then ,we have 

( ) ( )
11

1
1

n
n

n n
n

n

S
n

V
ω

−
−

−=  

We therefore know that ( ) ( )F V F Vδ
δ

+ −
 must be bounded for small V and small δ . The same 

argument applies to V  near Vol ( )nM . So for V  near zero and Vol ( )nM , we know that ( )'F V+  

and ( )'F V−  will always exist. 
Second, although one side derivative of ( )F V  may not exist, inequality (7), which holds in the 

context of comparison functions, implies 
( ) ( ) ( ) ( )

0 0
lim  and lim

F V F V F V F V
δ δ

δ δ
δ δ+ −→ →

+ − + −
 

are decreasing. However, based on the discussion above, we can conclude ( )'F V+  and ( )'F V−  

will always exist for V  near zero and Vol ( )nM . This implies the above two limits exist for any 

V ∈ (0,Vol( nM )) since they are bounded below and above. Namely ( )'F V+  and ( )'F V−  will always 
exist. Furthermore it is evident that ( ) ( )' 'F V F V+ −≤  for all V . 

Given inequality (7), it is natural to want to integrate it. We define the Ricci curvature mass for 
V <  Vol ( )nM : 

( ) ( ) ( ) ( )
22 222 01

1 ' ,
1

n n
n

n Ricm V n F V F V
n

ω −
− +

 = − −  − 
 

and define ( )( )Vol 0nm M = . It is evident that ( )0 0m = . 

Lemma3.2 Under the same assumption as theorem 1.2, ( )m V  of nM  is non-decreasing on the 

internal ( )10, Vol
2

nM 
  

 

proof: The main idea is that if ( )F V  were smooth, then we have 

( ) ( ) ( ) ( )
2

0' 2 ' .
1

n
n

nm V F V F V Ric F V
n

−
− = − ″ + − 

 

Since ( )F V  is increasing on ( )10, Vol
2

nM 
  

, ( )' 0F V ≥ , and by remark 2.3 and inequality (7), 

we know that ( )' 0m V ≥  on ( )10, Vol
2

nM 
  

, i.e. ( )m V  is non-decreasing on ( )10, Vol
2

nM 
  

. 

More generally, it is sufficient to prove that ( )' 0m V ≥  distributionally. We define 
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( ) ( ) ( )

( ) ( )

0 0
10 Vol
2

1 1Vol Vol
2 2

n

n n

V

F V F V V M

F M V M


 ≤

= < <

   ≥ 

 

  

and define ( )m V  with respect to ( )F V . 
To prove that ( )' 0m V ≥  distributionally, using the integration by parts formula, it is sufficient to 

prove 

( ) ( )' 0m V V dV
∞

∞

φ
+

−

− ≥∫   

for all smooth positive test functions φ  with compact support in ( )10, Vol
2

nM 
  

. The finite 

difference operator δ∆  is needed for the following proof, which is defined as 

( )( ) ( ) ( )g V g V
g Vδ

δ
δ

+ −
∆ =  

Then, 

−� 𝑚𝑚�
+∞

−∞
(𝑉𝑉)𝜙𝜙′(𝑉𝑉)𝑑𝑑𝑉𝑉 = −� ��𝑛𝑛2(𝜔𝜔𝑛𝑛−1)

2
𝑛𝑛−1 − 𝐹𝐹�+′(𝑉𝑉)2� −

𝑛𝑛2𝑅𝑅𝑅𝑅𝑅𝑅0
𝑛𝑛 − 1

𝐹𝐹�(𝑉𝑉)
2
𝑛𝑛�

+∞

−∞
𝜙𝜙′(𝑉𝑉)𝑑𝑑𝑉𝑉

= − lim
𝛿𝛿→0+

� {
+∞

−∞
�𝑛𝑛2(𝜔𝜔𝑛𝑛−1)

2
𝑛𝑛−1 − 𝛥𝛥𝛿𝛿 �𝐹𝐹�(𝑉𝑉)�

2
� −

𝑛𝑛2𝑅𝑅𝑅𝑅𝑅𝑅0
𝑛𝑛 − 1

𝐹𝐹�(𝑉𝑉)
2
𝑛𝑛}𝛥𝛥𝛿𝛿�𝜙𝜙(𝑉𝑉)�𝑑𝑑𝑉𝑉

= lim
𝛿𝛿→0+

� 𝛥𝛥−𝛿𝛿
+∞

−∞
{�𝑛𝑛2(𝜔𝜔𝑛𝑛−1)

2
𝑛𝑛−1 − 𝛥𝛥𝛿𝛿 �𝐹𝐹�(𝑉𝑉)�

2
� −

𝑛𝑛2𝑅𝑅𝑅𝑅𝑅𝑅0
𝑛𝑛 − 1

𝐹𝐹�(𝑉𝑉)
2
𝑛𝑛}𝜙𝜙(𝑉𝑉)𝑑𝑑𝑉𝑉

 

where we have used ( ) ( )( ) ( )( ) ( )f x g x dx f x g x dxδ δ−∆ = − ∆∫ ∫ .Then since ( )F V  has left-
hand derivatives everywhere, in the limit, we have 

( )( )( ) ( ) ( ) ( )
22

00

2lim '
1

n
n

nF V Ric F V F V V dV
n

∞

δ δ
δ

∞

φ
+

+ −
−

− −
→

−

 = − ∆ ∆ + − ∫     

By using the comparison functions at each point, we can deduce from remark 2.3 that if ( )F V″  
exists at 0V , ( ) ( )

00 0VF V F V″ ≤ ″ . So, in this case, as ( ) ( )
00 0' 'VF V F V= , we have 

( ) ( ) ( ) ( )
0 00 0 0 0' 'V VF V F V F V F V″ ≤ ″ . Then since ( )( ) ( ) ( )

0

2

0 00
lim | 2 'V VF V F V F Vδ δ
δ + − =
→

 ∆ ∆ = ″  
 , we 

have 

( )( ) ( )( )0 0 0

22

0 0
lim | lim | .V V V V VF V F Vδ δ δ δ
δ δ+ +− = − =
→ →

  ∆ ∆ ≤ ∆ ∆      
  

The inequality still holds even if ( )F V  does not have the second derivative at 0V , because, 
similar to lemma 3.1, ( )F V  is under a concave function ( )

0VF V , satisfying ( ) ( )
0VF V F V≥ , 

( )' 0,F V+ ≥  and ( )'F V+  is decreasing. If you draw a picture of the situation, the conclusion is clear. 
Changing the integration variable to 0V , then, we have 

( ) ( ) ( )( )( ) ( ) ( ) ( )
0

22

0 0 0 0 0 00

2' lim ' ,
1

n
n

V
nm V V dV F V Ric F V F V V dV

n

∞ ∞

δ δ
δ

∞ ∞

φ φ
+

+ + −
−

− −
→

− −

 − ≥ − ∆ ∆ + − ∫ ∫  

  

since ( ) ( ) ( ) ( ) ( )
00 0 0 0 0' ' ' ' 'VF V F V F V F V F V+ −= = = =    except at a countable number of points, 

further we have 
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= − lim
𝛿𝛿→0+

� �𝛥𝛥−𝛿𝛿 �𝛥𝛥𝛿𝛿 �𝐹𝐹𝑉𝑉0(𝑉𝑉0)�
2
� +

2𝑛𝑛
𝑛𝑛 − 1

𝑅𝑅𝑅𝑅𝑅𝑅0𝐹𝐹(𝑉𝑉0)−
𝑛𝑛−2
𝑛𝑛 𝐹𝐹𝑉𝑉0′(𝑉𝑉0)�

+∞

−∞
𝜙𝜙(𝑉𝑉0)𝑑𝑑𝑉𝑉0
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𝛿𝛿→0+

� 2
+∞

−∞
𝐹𝐹𝑉𝑉0′(𝑉𝑉0)𝐹𝐹𝑉𝑉0″(𝑉𝑉0) +

2𝑛𝑛
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𝑅𝑅𝑅𝑅𝑅𝑅0𝐹𝐹(𝑉𝑉0)−
𝑛𝑛−2
𝑛𝑛 𝐹𝐹𝑉𝑉0′(𝑉𝑉0))𝜙𝜙(𝑉𝑉0)𝑑𝑑𝑉𝑉0

= − lim
𝛿𝛿→0+

� 2
+∞

−∞
𝐹𝐹𝑉𝑉0′(𝑉𝑉0){𝐹𝐹𝑉𝑉0″(𝑉𝑉0) +

𝑛𝑛
𝑛𝑛 − 1

𝑅𝑅𝑅𝑅𝑅𝑅0𝐹𝐹(𝑉𝑉0)−
𝑛𝑛−2
𝑛𝑛 }𝜙𝜙(𝑉𝑉0)𝑑𝑑𝑉𝑉0

≥ 0.

 

The last inequality follows from (7). Hence, ( )' 0m V ≥  distributionally, so ( )m V  is a 
nondecreasing function of V . 

proof of Theorem 1.2: Review some concepts we just mentioned. 

( ) ( ) ( ) ( )
22 222 01

1 ' .
1

n n
n

n Ricm V n F V F V
n

ω −
− +

 = − −  − 
 

And, 

( ) ( )
2

01

n
n

nF V F V Ric
n

−
−″ ≤ − ⋅

−
                                            (8) 

in the sense of comparison functions, which means that for all 0 0V ≥  there exists a smooth 
function ( ) ( )

0VF V F V≥  with ( ) ( )
0 0 0VF V F V=  satisfying 

( ) ( )
0 0

2

0 0 01

n
n

V V
nF V F V Ric

n

−
−″ ≤ − ⋅

−
 

Now consider phase space which we will view as the x y−  plane where ( )x F V=  and 

( )'y F V+= . Let γ  be the path in phase space of F(V) for V between 0  and 1
2

Vol ( )nM . Since 

( )'F V  exists almost everywhere, and ( ) ( )' 'F V F V+ =  holds for these poins, then we note that 

( )1 Vol .
2

n dxM dV
yγ γ

= =∫ ∫                                                (9) 

From the above discussion we know that ( ) ( )0 0, ' 0F F V+= ≥  for ( )10, Vol
2

nV M ∈ 
 

. Since 

on ( )10, Vol
2

nM 
 
 

 ( )F V  is strictly increasing and ( )'F V+  is strictly decreasing ( ( )F V  is strictly 

concave), the x  position of γ  is non-decreasing and the y  position of γ  is strictly decreasing. 

Since ( )'F V+  may not be continuous, γ  may be disconnected. Because ( )1' Vol 0
2

nF M+
  ≤ 
 

, we 

set ( )1' Vol 0
2

nF M+
  = 
 

. Besides, since this action won’t have an impact on the integration, we can 

use vertical lines to connect the jumping points. We still denote the new curve as γ . 
Now we want to find the γ  which maximizes equation (9), with the constraint inequality (8) in 

the sense of comparison functions. If ( )F V  has second derivative, since ( ) dyF V y
dx

″ = , we can 

rewrite inequality (8) as 
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2

0 2

0

.
1

1

n
n

n
n

dy n dx dyy x Ric
dx n y n x Ric

n

−
−

−
−

≤ − ⇒ ≤
−

−
−

   

where the latter is true in the forward direction ( 0dx ≥ ). 
Because of the existence of comparison functions, the same estimation still works when ( )F V″  

does not exist. From the above inequality, since the total dy  is fixed, namely ( )
1

1
1

n
nn ω −
− , we know 

that the curve which maximizes equation (9) must have equality in (8) and have the first coordinate 
x  of the terminal point ( )0 ,0x  as big as possible. As we have computed in lemma 3.2, the equality 
in (8) is equivalent to ( )' 0m V = , which means that ( ) 0m V ≡ . Additionally, since we have 

( ) ( ) ( ) ( )
22 222 01

1 ' ,
1

n n
n

n Ricm V n F V F V
n

ω −
− +

 = − −  − 
 

the terminal point ( )0 ,0x  satisfies 

( ) ( )
222

2 01
1 0

1 Vol .
2 1

n nn
n

n Ricm M n x
n

ω −
−

  = −  − 
 

Since ( )m V  is non-decreasing on ( )10, Vol
2

nM 
  

, ( ) 0m V ≡  is the case maximizes 0x . But the 

standard sphere ( )0,nS g  with constant Ricci curvature 0 0Ric g⋅  has equality in (8)(this can be seen 

in the deduction of the inequality for ( )A V″ ). Let 0γ  be the path in phase space corresponding to 
this standard sphere with zero mass. Then 

( ) ( )
0

1 1Vol sup Vol ,
2 2

n ndx dx dxM S
y y yγγ γ γ

= ≤ = =∫ ∫ ∫  

which completes the proof. 
Remark: Although Bishop’s theorem’s isoperimetric proof appears to be cumbersome, the real 

difficulty arises when the second derivative is nonexistent. The main challenge is that ( )A V  might 
not be a smooth function. The proof can be considerably simplified if we only take into account the 
smooth case. It’s also interesting to note that using the same method, as described in [8-11], one can 
estimate volume given a constraint scalar curvature condition. 

5. Afterwards 
The idea of transforming a geometric problem into an analytic problem is inspiring. Under the 

guidance of this idea, we consider the geodesic ball ( )rB p  and its boundary ( )rS p . Under the 

same assumption as theorem 1.2, we define ( ) ( )tA t S p= , where ⋅  means the corresponding 

volume. This time ( )A t  is smooth. The same computation in section 2 follows, we can get 

( )
( )

( )
( )

( )( )2 2' , II ,
t tS p S p

A t Hd A t Ric H dµ ν ν µ= ″ = − − +∫ ∫  

where ( )xν  is unit normal pointed out at ( )0x V∈Σ . By Cauchy inequality 2 21II
1

H
n

≥
−

, and 

( ) 0,Ric Ricν ν ≥ ⋅ , we have 

( ) ( )
( )

2
0

1 .
tS p

nA t Ric A t H d
n

µ−
″ ≤ − + ∫  
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However, in this case we fail to associate 
( )

21

tS p

n H d
n

µ−
∫  with ( )A t  and ( )'A t , because there is 

no conclusion that the mean curvature of ( )tS p  is constant. If the mean curvature of ( )tS p  is 
constant, then ( )tS p  must possess some degree of symmetry. For arbitrary points on manifolds, 
this is not always the case. And we cannot use the Cauchy-Schwarz inequality, for 

( )
( ) ( )

( )
2

22 ' .
t tS p S p

A t H d Hd A tµ µ
 
 ≥ =
 
 

∫ ∫  

If there are some comparison theorems about mean curvature, then it will be possible to use the 
same method to get an ordinary differential inequality to prove this theorem. 
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